0%

细胞分割算法总结

一、传统方法


1、最大类间阈值法(大津法)

原理:

大津法又叫最大类间方差法、最大类间阈值法(OTSU)。它的基本思想是,用一个阈值将图像中的数据分为两类,一类中图像的像素点的灰度均小于这个阈值,另一类中的图像的像素点的灰度均大于或者等于该阈值。如果这两个类中像素点的灰度的方差越大,说明获取到的阈值就是最佳的阈值(方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。

实现思路:

  • 计算0~255各灰阶对应的像素个数,保存至一个数组中,该数组下标是灰度值,保存内容是当前灰度值对应像素数;

  • 计算背景图像的平均灰度、背景图像像素数所占比例;

  • 计算前景图像的平均灰度、前景图像像素数所占比例;

  • 遍历0~255各灰阶,计算并寻找类间方差极大值;

2、 形态学分水岭算法

原理:

分水岭算法(watershed)是一种比较基本的数学形态学分割算法,其基本思想是将灰度图像转换为梯度图像,将梯度值看作高低起伏的山岭,将局部极小值及其邻域看作一个“集水盆”。设想一个个“集水盆”中存在积水,且水位不断升高,淹没梯度较低的地方,当水漫过程停止后,就找出了分割线,图像也就可以被分割成几块连通区域。